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Abstract. Climatic and environmental changes during past interglacial periods can be investigated to improve our
understanding of mechanisms governing the changes which are currently observed. Numerous proxies might be utilised to
reconstruct various environmental parameters. For instance, pollen analysis indicates changes in vegetation as well as winter
temperature fluctuations, while Chironomidae larvae head capsules are widely used to recreate summer thermal conditions.
Non-biting midges remains indicate trophy and pH of water bodies as well. Nevertheless, they have been used mostly in the
studies of the Holocene with hardly any Chironomid-inferred temperature reconstructions conducted for MIS 11 period. In
this study we present the first quantitative summer temperature reconstruction for the post-Holsteinian (Marine Isotope Stage
- MIS 11b) in Central Europe based on the analysis of fossil chironomid remains preserved in palaeolake sediments recovered
at Krgpa, southeastern Poland. The stratigraphic context for the chironomid-based summer temperature reconstruction is
provided by pollen data, together allowing to compare our results in the context of climate development at the end of the
Holsteinian Interglacial. Chironomidae assemblages at the Krepa site consist mainly of oligotrophic and mesotrophic species

(e.g Corynocera ambigua-type, Chironomus anthracinus-type) with lower abundance of eutrophic species (e.g. Chironomus

plumosus-type). The chironomid-based summer temperature reconstruction indicates July temperature ranging between 15,3°C
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and 20,1°C during the early post-Holsteinian. Temperature changes during the first stadial after the Holstein Interglacial
period are also reflected by the pollen data, which, however, show a certain delay compared to the chironomids. In any case,
results from Krepa prove that conducting Chironomidae analysis is even feasible for periods as early as the mid-Pleistocene,
enhancing our understanding of the mechanisms that control present-day climatic and environmental changes. The additional
element of this research is indicating sites within the Polish borders that were investigated so far - mostly on the basis of pollen
analysis, occasionally Cladocera, isotopes, etc. - and might be new objects of studies based on Chironomid-inferred
temperature reconstructions. However, bringing Chironomid analysis with particular emphasis of challenges of conducting it
with the use of sediments older than Holocene is the primary aim of this publication. Data from the MIS 11 complex are

unique. There are only 4 sites with pre-Late Glacial chironomid-based summer temperature reconstructions in Europe.

1 Introduction

Climatic fluctuations occurred numerously throughout Earth’s history and they were triggered by natural causes — without
human participation. This situation creates the opportunity to compare those changes with the current ones, as the Holocene is
the only interglacial during which human activity was considerable. The widely debated topic of the Anthropocene is presently
taking place in the scientific community in various scientific disciplines from the establishment of the boundary of the unit
through the scale of human influence on the functioning of the natural environment in the Holocene throughout all scales
starting from micro, through regional to global (Brondizio et al., 2016).

Holocene stratigraphic units corresponding to marine isotope stages (MIS 1), whose time frame has from 11,500 years BP —
present (Mayewski et al., 2017) is an abundant source of environmental archives, i.a. lakes, palaeolakes, ice cores, trees, oceans
etc. which provide material for palaeoecological analyses. Taking advantage of the sensitivity of some groups of organisms to
hydrological or climatic conditions change, we can use this knowledge to reconstruct past events that directly affected the
abundance or species structure of these groups of organisms (Battarbee, 2000). Species, which are characterised by narrow
ecological requirements, whether it be air temperature, water chemistry or water table depth, are used for certain
palaeoenvironmental reconstructions (Juggins and Birks, 2012). Many ecological parameters can be reconstructed using
different proxies. For example, foraminifera is a reconstruction tool for ocean pH (Foster and Rae, 2016; Roberts et al., 2018),
pollen indicates changes in vegetation migration (Ralska-Jasiewiczowa et al., 2004; Kupryjanowicz et al., 2018) can be used
as a proxy showing the activities of a human in the past (Chevalier et al., 2020) or serve as a palaeoclimatic proxy (e.g. Rylova
and Savachenko, 2005; Hrynowiecka and Winter, 2016), whereas head capsules of Chironomids serve as the basis for summer
air temperature reconstruction (Eggermont and Heiri, 2012). Chironomidae remnants analysis allows the assessment of the
water reservoir trophy and pH as well (Pt6ciennik, 2005).

In general, palaeoecological and palaeoclimatological reconstructions indicate considerable human impact on the environment
during the last 300 years (Zalasiewicz et al., 2010). However, these reconstructions are not capable of giving unequivocal

information about exact air temperature changes nor whether these changes and their pace are induced by natural causes or
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human activity. To gain a deeper understanding of the present-day human impact on climate and environment, it is essential
to investigate natural climate variability and environmental changes during past warm periods prior to any human activity. In
this regard, one particularly suitable target is the Holsteinian Interglacial (or Mazovian Interglacial in Poland), which is
commonly estimated to have lasted from 423 to 395 ka BP and is considered as corresponding to Marine Isotope Stage (MIS)
11c (Lauer and Weiss, 2018; Lauer et al., 2020; Fernandez Arias et al., 2023). Climate conditions in Northern Europe were
temperate at that time (Nitychoruk et al., 2018), but vegetation reconstructions suggest warmer and more humid conditions
compared to climate during the Holocene (MIS 1) climatic optimum (Hrynowiecka and Winter, 2016). Two major climatic
oscillations have so far been documented during the Holsteinian Interglacial - the Older Holsteinian Oscillation (OHO) and
the Younger Holsteinian Oscillation (YHO). The OHO occurred around 418 BP (Koutsodendris et al., 2010, 2012; Gérecki,
2023) and is clearly connected to a rapid cooling as indicated by the disappearance of temperate vegetation (mostly Picea-
Alnus forests) and spread of pioneer tree taxa including Betula, Pinus and Larix (Koutsodendris et al., 2010, 2012; Candy et
al., 2014; Hrynowiecka and Pidek, 2017; Gorecki et al., 2022). Although the OHO has been described at multiple sites across
northern Europe (Koutsodendris et al., 2012) it has so far not been identified in southern European (Kousis et al., 2018). In
contrast to the OHO, the YHO occurred around 400 ka BP within the climatic optimum of the Holsteinian Interglacial
(Carpinus-Abies phase) and was apparently not connected to a significant cooling (Gérecki et al., 2022). Records from
Germany and eastern Poland suggest a sudden regression of Carpinus from the forest communities (Koutsodendris et al., 2010;
Hrynowiecka et al., 2019; Gérecki et al., 2022) and particularly in Poland a rapid spread of Abies with an admixture of Corylus
and at southern sites also Taxus is observed (Gorecki et al., 2022), suggesting that temperature was not limiting the growth of
Carpinus.

In this research we focus on the Chironomidae state of research in the Holstein Interglacial. Although non-biting midges
remains are widely used in climate and palaecoenvironmental reconstructions (Eggermont and Heiri, 2012), there is still not
much research considering using them to recreate ecological conditions during the Holsteinian Interglacial. In fact, quantitative
reconstructions based on terrestrial archives for this period are rare, regardless of the proxy used. Exceptions from this rule
include palynological reconstructions from Velay maar sites in southern France (Reille and de Beaulieu, 1995), Tenaghi
Philippon in north-eastern Greece (Tzedakis et al., 2006; Ardenghi et al., 2019) and Lake Ohrid on the North Macedonian-
Albanian border (Kousis et al., 2018). Pollen sequence from Osséwka palaeolake (eastern Poland) has also been conducted,
nevertheless it covers only the last stage of the Holsteinian Interglacial (Binka et al., 2023). Palynological data from MIS11
has been also studied based on material from Nowiny Zukowskie site (Hrynowiecka and Winter, 2016). Another site worth
mentioning is Bilhausen in central Germany, which provides pollen record for Bilhausen Interglacial, however, it remains
unclear whether this period is MIS 11 or MIS 13 analogue (Kiihl and Gobet, 2010). There are even fewer northern-European
Chironomid-inferred palaeoecological reconstructions covering MIS 11 period. One of the exceptions is Hoxne site in eastern
England (Horne et al., 2023). Contemporary state of knowledge considering MIS11 has been reviewed by Candy et al. (2014).
That is why extension of using Chironomidae proxy on other periods (i.a. Holsteinian Interglacial) is crucial to understand

current climate changes.
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We tested temperature reconstruction using the Swiss-Norwegian-Polish Training Set and presented the first Chironomid-
inferred temperature reconstruction from Poland before the Last Glacial Period and even for the post-Holsteinian. The literature
contains data from pollen analysis for this period, but the temperature reconstruction will be one of the first for this time range.
This work gives new light on the possibilities of analysing subfossil Chironomidae.

Additionally, we have reviewed sites documenting lake sediments from the Holsteinian Interglacial period. Based on this we
selected sites with a probable continuous sequence of interglacial sediments, which represent a potential archive for
reconstructing the palaeotemperatures of the summer period on the basis of Chironomidae. In this paper we also discuss the
potential that non-biting midges analysis brings to the wide range of proxies we use in the palaeoecology of quaternary
sediments but also challenges such as those arising from evolution and interchanging adaptations to ecological requirements
and the behaviour of fossil remains. In the presented article, we have collected all known sites of Holsteinian age from Poland.
We have collected nearly 80 sites that were researched in Poland on the map. We also created an up-to-date set of sites. We

hope that our list will be a handy syllabus for people interested in palaeoclimate research in Poland.

2 Data and methods

2.1 Data compilation

The research covered sites located in Poland. Holsteinian (Mazovian) Interglacial has been included. This analysis
encompasses 80 sites. They are concentrated mainly in the eastern and central part of Poland (east of Warta valley), with only
several sites located in western half of the country (Fig. 1). In general, they are focused in the area contained between Wartanian
Glaciation and Odranian Glaciation maximum ranges (Krupinski, 2000). The sites’ locations were presented in tabular form
(Tab. 1). As the Holsteinian cores were often researched as early as in 1930-1960’s, their exact location is not always known
from scientific papers — it had to be estimated. In this case, location sketches and Google Earth were used as the location

estimation tools.
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Figure 1: Holsteinian sites location in Poland with different glaciation ranges. The number of each location corresponds with
Supplement Table 2. Sites from area in frame (A) are labelled in Supplement Figure 2. Krepa site is highlighted with a big red dot.
Glaciation ranges based on Zarski et al. (2024), Pochocka-Szwarc et al. (2024), Marks (2023). Caption: map created with the use of
EU 15s Digital Elevation Model; rivers downloaded from: https://www.naturalearthdata.com/. Map created in ArcMap programme.
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2.2 Holsteinian Interglacial

The climate during MIS 11c was characterised by relatively stable warm and moist conditions, with global temperatures
approximately 1.5-2°C above the pre-industrial level (Masson-Delmotte et al., 2010). According to Raymo and Mitrovica
(2012) and Muhs et al. (2012), the sea level was possibly 6-13 m higher than present. Part of it can be attributed to the melting
of the Greenland Ice Sheet (Robinson et al., 2017), as pollen and palaecoDNA data suggest the existence of spruce forests in
Greenland at this time (Willerslev et al., 2007; de Vernal and Hillaire-Marcel, 2008).

In Europe, warm and wet oceanic climate conditions extended far to the East as evidenced by the presence of Taxus and Abies
pollen at sites in Lithuania (Kondratiene and Gudelis, 1983), Belarus (Mamakowa and Rylova, 2007), and the western Ukraine
(Lanczont et al., 2003; Benham et al., 2016), while modern distribution limits of these taxa are located estimated further to the
west (Benham et al., 2016). Evidence from several terrestrial records from Eurasia suggests that the MIS 11c climate was also
highly complex, with pronounced climate variability occurring on both centennial and millennial timescales (Koutsodendris
et al., 2010; Prokopenko et al., 2010; Tye et al., 2016; Oliveira et al., 2016; Tzedakis, 2010; Gorecki et al., 2022).

The pollen succession of the Holsteinian Interglacial in Poland is characterised by the co-occurrence of pollen from Picea-
Alnus and Carpinus-Abies trees, as well as a significant proportion of Taxus pollen, and a frequent occurrence of thermophilic
taxa such as Pterocarya, Celtis, Juglans, llex, Carya, Parrotia, Buxus, Vitis, Brasenia, Trapa, and Azolla (Janczyk-Kopikowa,
1991). Temperature reconstructions based on the indicator-species method suggest for the warmest period, the Carpinus-Abies
phase, temperatures of 0-3 °C in January and 21-26 °C in July, which along with high precipitation created a suitable
environment for the spread of rare warmth-adapted taxa (Krupinski, 1995; Hrynowiecka and Winter, 2016).
Palaeotemperatures reconstructions from Dethlingen (Koutsodendris et al., 2012) suggest, however, slightly lower
temperatures in Western Europe for both January (-2.2 £ 3.1 °C) and July (17.8 £ 2.1 °C).

The warm character of the Holsteinian Interglacial was also confirmed by oxygen isotope studies based on endogenic lake
carbonates (Nitychoruk et al., 2005) and snail shells (Szymanek, 2018). These showed significant changes in climatic
conditions throughout the Holsteinian Interglacial, during which, continental and maritime influences intertwined in the
northern part of Europe. Continental influences resulted in a shortened vegetation period with long winters, while the opposite
situation occurred under maritime influence, i.e. the vegetation period was significantly longer and temperatures were milder

and precipitation rates higher, reflected by the appearance of stenothermal species (Nitychoruk et al., 2005).

2.3 Study area

The Krepa site (51°37°53.2”°N, 22°18°38.1"’E, 146 m amsl.) is located in SE Poland, near Kock, approximately 120 km
southeast of Warsaw. In a geomorphological sense it is situated in the central-eastern part of the North European Plain behind
the maximum extent of the Saalian glaciation (Marks et al., 2018). The profile analysed in this paper is situated on a moraine
plateau related to this ice sheet. Holsteinian Interglacial deposits in the area were first identified by Jesionkiewicz (1982)
during cartographic work for the 1:50 000 Detailed Geological Map of Poland (DGMP; Sheet 676 - Kock) (Drozd and Trzepla,
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2007). On the moraine plateau, the interglacial deposits are found under a thin cover of moraine deposits, whereas at the slopes
of the nearby Wieprz River valley, they are exposed directly at the surface. This study’s material was obtained from a sediment

core drilled in 2015 using a Geoprobe drilling device (Gorecki, 2023).

2.4 Lithological description of the Krepa sediment succession and palaeoenvironmental interpretation

In the collected 23.8 m long sediment core, there is a 2 m thick layer of massive, light gray-brown sandy clays with a large
number of Scandinavian rock fragments at the base (unit 1), which is interpreted as glacial till (Fig. 2). Directly above, a 0.6
m thick layer of rhythmically laminated sandy silts and sandy-clayey silts is found (unit 2), which gradually turns into a
carbonate gyttja with small interlayers of carbonatic-minerogenic gyttja (unit 3). Between 11.87 and 7.6 m core depth, non-
carbonatic organic-minerogenic gyttjas with a generally increasing mineral content towards the top are found (unit 4). This
gyttja sequence is overlain by a 1.9 m thick layer of massive clays (unit 5), which is followed by a 1.1 m thick layer of fine-
to medium-grained sands (unit 6) and a 3.1 m thick layer of rhythmically laminated sandy silts (unit 7). The profile is capped
by a 1.5 m thick layer of sandy moraine clay with Scandinavian rock fragments (unit 8).

The position of the lower glacial till (unit 1) and its petrographic characteristics (Drozd and Trzepla, 2007) indicate that it was
accumulated during the Elsterian glaciation (or Sanian 2 glaciation in Poland), which is considered to correspond to MIS 12.
The sediments of unit 2 are interpreted as the result of glaciolimnic sedimentation in a relatively shallow water body between
blocks of dead ice during the recession of the Elsterian glacier. The glaciolimnic sediments gradually pass into limnic sediments
(unit 3), which are interpreted to be deposited in the profundal of an already relatively deep lake. The limnic sediments of unit
4 are related to the gradual shallowing of the lake, associated with its significant filling with sediments. At the same time, the
change towards colder climate conditions led to increased denudation and erosion in the catchment and a systematic increase
in mineral components in the lake sediments. The unit 5 sediments probably represent accumulation in a periglacial lake, which
was subsequently covered by proglacial sediments (units 6 and 7) of the transgressing Early Saalian (MIS 10) ice sheet and
finally covered by its moraine clays (unit 8).

The origin of the sedimentary basin at Krepa is difficult to interpret. Most sites with deposits from the Holsteinian (Mazovian)
Interglacial in this region of Poland are associated with tunnel valleys formed during the Elsterian (Sanian 2) glaciation (Zarski
et al., 2005; Nitychoruk et al., 2006). However, these sites are usually located beyond the maximum extent of the Late Saalian
glaciation (Drenthe Stage in Germany; Odra glaciation in Poland; MIS 6) and are thus subtly visible in the current terrain
morphology. In the case of Krepa, the covering of these deposits by the Late Saalian (Odra) glacial advance has resulted in the
complete obliteration of the post-Elsterian landscape. Based on the geological cross section prepared by the authors of the
Kock DGMP sheet (Drozd and Trzepla, 2007) and the distribution of interglacial deposits in the study area (Jesionkiewicz,
1982), it can only be inferred that this depression was a relatively extensive kettle hole, formed during the transgression and

recession of the Elsterian (Sanian 2) ice sheet.
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2.5 Pollen analysis

Palynological samples were prepared following the standard methodology outlined by Erdtman (1960), with modifications
involving the use of HF acid (Berglund and Ralska-Jasiewiczowa, 1986). Prior to laboratory processing, a Lycopodium
indicator tablet was added to each sample to determine the absolute sporomorph concentration (Stockmarr, 1971). Pollen grains
were counted using a ZEISS Axio Imager A2 light microscope. For most samples, counts were conducted up to 500 grains,
including both arboreal (AP) and non-arboreal (NAP) plants. However, samples from glacial-age sediments, which were low
in palynomorphs concentrations, were counted up to 300 grains. Percentages were calculated based on the sum of pollen grains
from trees, shrubs (AP), herbaceous plants, and dwarf shrubs (NAP).

The outcomes of the palynological analysis are depicted in a shortened pollen diagram (Fig. 3), divided into 14 Local Pollen
Assemblage Zones (LPAZ). The formation of the lake can be traced back to the end of the Elsterian (Sanian 2) glaciation,
although a hiatus in the pollen record is evident at 21.10-21.15 m, possibly encompassing the entirety of Pollen Period |
(Betula and Betula-Pinus phases). The Holsteinian (Mazovian) commences with the Picea-Alnus phase of Pollen Period 1.
The upper segment of the succession, starting at 13.10 m, indicates multiple cold/warm oscillations, usually connected to the
Early Saalian (Liviecian) Glaciation. More elaborate descriptions regarding pollen analysis results are provided in Gorecki
(2023).

2.6 Chironomidae analysis

Sediment samples for chironomid analysis were taken at 5-40 cm intervals (sample volume approximately 1 cm3). Chemical
preparation methods followed Brooks et al. (2007). The precipitate was initially heated with KOH. The wet sediment was
passed through 212 and 100 um mesh sieves and subsequent residues were treated in an ultrasonic bath for 3 sec. The processed
sediment were examined under a stereo binocular microscope at 25x magnification. Chironomid head capsules from each
sample were picked and mounted in Euparal. Identification of chironomid head capsules followed by Wiederholm (1983),
Schmid (1993), Klink and Pillot (2003), Brooks et al. (2007) and Andersen et al. (2013). Ecological preferences of identified

taxa are based mainly on Brooks et al. (2007).

2.7 Mean July air temperature reconstruction

In order to reconstruct mean July air temperatures (Tju) from the Kre¢pa chironomid assemblage, the Swiss-Norwegian-Polish
training set (SNP TS, Kotrys et al., 2020) was used. The training set includes 357 lakes, 134 taxa, covers a temperature range
between 3.5 and 20.1 °C. and uses the weighted averaging-partial least squares transfer function (WA-PLS). The RMSEP for
this combined training set is 1.39°C, and the R? is 0.91 (Kotrys et al., 2020). The temperature reconstruction was carried out

using the C2 software (Juggins, 2007).
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3. Results and interpretation

3.1 Regional and local vegetation changes during the end of Holsteinian interglacial and Early Saalian at Krepa site

Table 1: Description of local pollen assemblage zones (LPAZ) and distinguished in the sediments from the Krepa site

LPAZ  Depth Main features of Local Pollen Assemblage Zones (LPAZ) Main features of significant in the
chironomid record
KR-1 2120- NAP values peak at >40 % (mostly Poaceae, but also No Chironomidae.
2180 Artemisia and Betula nana). Open communities are dominant.
Tree pollen primarily comprises Pinus and Betula with both
taxa potentially existing locally as small trees. Pollen of
temperate species is sourced from redeposition.
KR-2 2027.5- Initially, a conspicuous dominance of pollen originating from No Chironomidae.
2110 pioneering arboreal species, notably Pinus (up to 61 %) and

Betula (up to 38%), coupled with a negligible representation
of herbaceous plant pollen, signifies the prevalence of dense
birch and pine forests. Subsequently, Picea (up to 24%)
becomes established and Alnus (up to 35 %) colonises areas
with higher soil moisture, probably adjacent to the lake.
Rising pollen values of riparian species, e.g. Fraxinus (3,5 %),

Ulmus (2,5 %), and Quercus (4 %), suggest local presence.

10
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KR-3

KR-4

1957.5-
2027.5

1892.5-
2027.5

At the beginning, the percentage of Taxus increases sharply
(<40 %), suggesting a key role in the formation of forest
communities. Continued presence of riparian forests. Corylus,
Viburnum, Sambucus nigra and thermophilic species such as
Pterocarya fraxinifolia, Vitis, Hedera helix, Ligustrum and
Buxus sempervirens appeared in the forest understorey.
Despite favourable climatic conditions, high Pinus
percentages (>40 %) persisted, suggesting that this taxon was

still important in the formation of forest communities.

Rapid decline of Taxus forests (<5 %). Alnus (<25 %) and
Picea (<30 %) regain significance in the forest communities.
Contribution of riparian taxa remains low (Fraxinus and
Ulmus <1,5 %). Appearance of Carpinus, reaching up to 7 %.
Continued presence of thermophilic taxa (Viscum, Pterocarya
fraxinifolia, Vitis, Hedera helix, Ligustrum, Buxus

sempervirens) indicates favourable climate conditions.

11
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KR-5
OHO

KR-6

1855-
1892.5

1697.5-
1855

Clear change in the composition of forest communities
Rapidly disappearing temperate vegetation was replaced by
pioneer trees such as Betula (25 %) and Pinus (45 %). Forest
communities remain a dominant element of the landscape, as
suggested by the lack of an increase in NAP. Temperate
species survived but at a much lower share. The clear shift in
species composition suggests a much colder and drier climate

compared to the previous zones.

This zone is associated with the dominance of Abies and
Carpinus (both up to 27 %). Mixed Abies forests most likely
occupied poorer soils, while more fertile soils were covered
by deciduous forests consisting of Carpinus, Quercus (<15
%) and Corylus (<15 %) in the understorey. Taxus persists but
only as an admixture (<2 %). The entire phase is characterized
by the undisturbed occurrence of Alnus, which proves the
persistence of this taxon near the lake. Similarly, no
significant changes in forest density are recorded as evidenced
by low NAP percentages. Abundant thermophilic taxa,
including Viscum, Pterocarya fraxinifolia, Vitis, Hedera
helix, Ligustrum, Buxus sempervirens, Parrotia persica,
Celtis, Carya and Juglans indicate favourable climate

conditions.
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KR-7

YHO

KR-8

1647.5-
1697.5

1497,5-
1647.5

This zone encompasses an apparent change in forest

communities, reflected by a breakdown of Carpinus (to 3 %)
and an increase of Abies (up to 34 %), Corylus (22 %) and
Taxus (5 %). Mixed fir forests replaced deciduous forests at
that time, while Corylus could be both an admixture in mixed
forests and create its communities in bright places on more
fertile soils. The Carpinus crisis probably did not last long,
and it soon began to rebuild its presence. A continuous
occurrence of thermophilic taxa is observed throughout the

zone.

As in KR-6 the two key taxa were Abies and Carpinus.
Although percentages of the latter were rising to 36 %, Abies
(up to 26 %) remained important and, in some parts,
dominated over Carpinus. Buxus deserves special attention
among abundant thermophilic taxa since it occurs at a greater
frequency than in the previous zone. The end of the zone is

associated with a decline in the percentage of Abies.

13

EGUsphere\

One specimen

pallens-type.

No Chironomidae.

of Glyptotendipes




https://doi.org/10.5194/egusphere-2024-3129
Preprint. Discussion started: 18 November 2024
(© Author(s) 2024. CC BY 4.0 License.

KR-9

KR-10

1362.5-
1497.5

1312.5-
1362.5

EGUsphere\

A characteristic feature of this zone is the dominance of No Chironomidae.

Carpinus (up to 44 %) and a significant decrease in the
importance of Abies (<10 %). Mixed forests with a significant
share of Quercus (up to 33 %) could develop in poor soils
instead of Abies forests. Thermophilic species were the most
abundant in the entire profile, especially Pterocarya
fraxinifolia (1 %) and Buxus sempervirens (<2 %). Slow
overgrowth of the lake is reflected by the slow decline in the
proportion of aquatic plants and the decline in Alnus
percentages. The phase ends with the decline of Carpinus and

Corylus and the reappearance of Picea.

The beginning of the zone is marked by the slow
disappearance of temperate deciduous species, including
Alnus, Quercus, Corylus, and Carpinus. Abies gains
importance again (up to 32 %), creating conifer forests
together with Picea (up to 13 %) and Pinus. Thermophilic
taxa are still present. The end of the zone is associated with
the disappearance of Abies, the dominance of Pinus (67 %),

and the appearance of Larix <1,5 %).
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KR-
lla

KR-
11b

1257,5-
1312.5

1222.5-
1257.5

From this zone, the dominance of pioneer trees and herbs
begins. The palynological record suggests the development of
sparse Betula and Pinus forests with an admixture of Larix
(12 %) and possibly locally occurring Alnus (3 %) and Picea
(5 %). Pollen of other temperate trees originate from
redeposition or long-distance transport and are not indicative
of local occurrence. The high share of NAP pollen also proves
the openness of forest communities in this period. A rapid
change in vegetation is observed in the middle part of the
phase. Open communities began to dominate the landscape
(NAP <40 %), and woody vegetation was reduced to loose
birch-larch tree stands that occured locally under favourable
conditions. Juniperus (33 %) and Poaceae (23 %) had the
highest share among the herbaceous plants, suggesting the
presence of shrub tundra. Vast areas of open ground favour
soil erosion and redeposition of older material, which in the
palynological record is visible as a sudden increase in the
proportion of pollen from temperate taxa. Following the
dominance of herbaceous vegetation, the Betula-Larix forests
reentered the area. The zone ends with a sudden increase in

the percentage of Pinus pollen.

Pinus-Betula forests spread within this zone with an
admixture of Larix and Picea. Although forest communities
dominated most of the landscape, there were still patches of
herbaceous plant communities, as indicated by high NAP
percentages. The zone ends with a sudden decrease in Pinus

percentagesand an increase in the Betula share.
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KR-
1ic

KR-
12a

KR-
12b

KR-
12c

1187.5-
1222.5

1122.5-
1187.5

1072.5-
1122.5

1022.5-
10725

Initially, loose birch forests with an admixture of Larix and
Pinus spread. In the middle of the zone, the landscape was
further opened and likely dominated by Juniperus shrub
tundra. The zone ends with a sharp increase in the percentage

of Pinus and a decrease in Betula and NAP.

At the beginning of the zone, the development of Pinus forests
with an admixture of Picea (up to 6 %) is observed. Trace
amounts of NAP suggest a very dense vegetation. However,
percentages of Pinus and other tree species gradually
decrease, and open herbaceous communities appear. The end
of the zone is associated with a decrease in the percentage of

Pinus pollen.

A further decrease in Pinus pollen is observed. At the end of
the zone, the landscape was likely already dominated by open

communities (NAP up to 40 %) and sparse Pinus forests.

Initially, dense Betula forests with Larix as an admixture
dominated the landscape. Subsequently, a rapid development
of Pinus forests is observed. The end of the zone is associated

with a sudden drop in the percentage of Pinus pollen.
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KR-
13a

KR-
13b

967.5-
1022.5

877.5-
967.5

Initially, there was a significant opening in the vegetation, and
herbaceous plants and shrubs dominated the landscape. In the
middle section of the zone, there was a temporary return of
very sparse Pinus and Betula forests, followed by another
expansion of herbaceous vegetation. The end of the zone is

associated with an increase in Betula pollen.

Relatively high percentages of Pinus (15-48 %) and Betula
(29-49 %) suggest the existence of sparse Pinus-Betula forests
in the vicinity of the lake. The presence of Betula nana (<5
%) indicates patches of shrub tundra in the area. The end of
the zone is associated with the further spread of open

communities.
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KR-14  765- Within this zone, open communities further expanded, likely This zone is characterized by a low
877.5 steppes dominated by Poaceae and Artemisia. The vegetation abundance of Chironomidae. Only two
also featured shrubs, such as Juniperus and Betula nana. Tree individuals of Chironomus plumosus-
species of the Betula genus were present throughout the zone, type were recorded in the sediment.
and percentage variations for this taxon were low.
Conversely, Pinus percentages considerably fluctuated. Both
pioneer tree species might have formed sparse patches of

forest vegetation in favourable environmental conditions.

3.2 Ecological reconstruction based on Chironomidae assemblages from the Krepa site

The description of Chironomidae assemblages was prepared following the Local Pollen Assemblages Zones (LPAZ) as these
reflect climate change better than the chironomid assemblages. However, the low number of head capsules as well as the small
species diversity made it impossible to statistically determine a good modern analogue reconstruction of Chironomidae zones.
At the base of the sediment sequence (2120-2027.5 cm), there are no remains of Chironomidae preserved. The first individuals
occur in LPAZ KR-4 (1892.5-2027.5 cm) and KR-7 (1647.5-1697.5 cm). In these zones, eurytopic Chironomus anthracinus-
type in a poor state of preservation is observed (Fig. 4). There are no remains of Chironomidae in the following LPAZ
belonging to the Holsteinian and the first single remains of head capsules of Chironomus plumosus-type are recorded again in
LPAZ KR-11c (1187.5-1222,5 cm), which is already considered as post-Holsteinian. This species occurs in a wide range of
habitats and is particularly resistant to anoxia (Brooks et al., 2007). The following LPAZ KR-12a (1122.5-1187.5 cm) is
characterised by eurytopic conditions with low amounts of Chironomidae. Assemblages could indicate a deterioration of
environmental conditions (Chironomus anthracinus-type and Corynocera ambigua-type). KR-12b (1072.5-1122.5 cm)
contains mainly cold-adapted and freeze-resistant species like Corynocera ambigua-type, Glyptotendipes pallens-type and
Glyptotendipes severini-type, which are often associated with algae and diatoms or mine leaves (Tarkowska-Kukuryk, 2014).
LPAZ KR-12c¢ (1022.5-1072.5 c¢m) is characterized by species highly resistant to difficult environmental conditions, i.a.
Chironomus anthracinus-type, Corynocera ambigua-type and Glyptotendipes pallens-type. The next LPAZ KR-13a (967.5-
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1022.,5 cm) is a phase with mainly cold-adapted species such as Corynocera ambigua-type. During LPAZ KR-13b (877.5-
967.5 cm) the number of Chironomidae gradually increased with indicators of progressive eutrophication (e.g. Chironomus
plumosus-type and Dicrotendipes nervosus-type (Ilwakuma and Yasuno, 1981)) and cold oligotrophic but post-eutrophic
environments (Corynocera ambigua-type)(Brooks et al., 2007) occurring more frequently. During LPAZ KR-14 (765-877.5
cm) the amount of Chironomidae is low. Only eurytopic, warm species, which are resistant to anoxia such as Chironomus
plumosus-type appear (Brooks et al., 2007). The disappearance of Corynocera ambigua-type could also be the result of large
changes in oxygen concentration, reduced production of benthic algae or changes in the structure of the sediment (Brodersen
and Lindegaard, 1999b).

In general, the chironomid assemblages preserved in the Krepa sediments are dominated by the two species Corynocera
ambigua-type and Chironomus anthracinus-type. Corynocera ambigua-type is a species often described as cold-adapted
oligotrophic (Fjellberg, 1972; Pinder and Reiss, 1983; Walker and Mathewes, 1988; Brooks et al., 2007; Luoto et al., 2008;
van Asch et al., 2012), inhabiting shallow Arctic and subarctic regions. Adults do not fly and breed on the water surface when
the temperature reaches approximately 7-8°C (optimum 13.7°C). Mothes (1968) concluded that Corynocera has a growth
period in autumn and winter, while the eggs do not develop but only survive during summer. The decline in their numbers may
be due to the growth of filamentous algae in summer. This taxon is also found in eutrophic lakes (Halkiewicz, 2008; Kotrys et
al., 2020). Among others, larvae of Corynocera ambigua-type are eurythermic, while the pupae are cold-stenothermic
(Brundin, 1949). They only reproduce at low temperatures and inhabit reservoirs with a maximum depth of approximately 25
m. The number of Corynocera ambigua-type has shown to correlate with the content of charophytes (Brodersen and
Lindegaard, 1999b). Although charophytes are not food for this species, their presence may increase the number of diatoms
and stabilize the trophic status and water clarity (Forsberg, 1965; Blindow, 1992). Corynocera ambigua-type species lives in
dendritic tubes. Its food is diatom/algal detritus and fining of mineral grains (Fjellberg, 1972; Boubee, 1983).

The occurrence of this species has been recorded during cold episodes or glacial periods, at sites in England (Bedford et al.,
2004), Norway (Velle et al., 2005), Poland (Ptociennik et al., 2015), and the Baltic region (Hofmann and Winn, 2000).
However, Corynocera ambigua-type, cannot be considered a merely cold species. Some authors believe that it’s occurrence
depends on high oxygen contents in the water (Brodersen and Lindegaard, 1999a) and for some authors, it is a pioneer species
that appears first after glacier retreats, just like Chironomus anthracinus-type (e.g. Heiri and Millet, 2005; Ilyashuk et al., 2005,
2013; Gandouin et al., 2016; llyashuk et al., 2022). Luoto and Sarmaja-Korjonen (2011) claim that this is how the species
adapts to existing climatic conditions. The decline in Corynocera ambigua-type numbers could also be attributed to changes
in lake productivity related to changes in the environment. For example, when the production of soil and trees increased, the
number of this species has been found to decrease (Magny et al., 2006; Larocque-Tobler et al., 2009).

Since these are the only species that appear there, let us take a closer look at their occurrence and the habitat conditions in
which they were recorded in modern times. Chironomus anthracinus-type occurs in various zones of the lake. This species is
capable of surviving approximately 2-4 months of oxygen deficiency in the water (Hamburger et al., 1994). It is a species that

easily inhabits niches inaccessible to other species due to difficult conditions. According to some authors, it is a eutrophic
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(Kansanen, 1985; Brodersen and Lindegaard, 1999b) or cold-adapted species (Rohrig et al., 2004; Brooks et al., 2007,

Ptociennik et al., 2011). It prefers softer and more organic sediments (McGarrigle, 1980). The appearance of Chironomus

anthracinus-type and Glyptotendipes pallens-type may indicate the onset of eutrophication. Both Chironomus anthracinus-

type and Corynocera ambigua-type are species found in stratified lakes (e.g., Saether, 1979; Heiri, 2004). As we can see, both

species can be called resistant to unfavorable environmental conditions. They have a fairly wide range of conditions in which

they occur today and can even withstand long periods of anaerobic conditions in lake reservoirs.
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Figure 3: Percentage diagram of selected pollen, spore, and algal taxa form the Kre¢pa site core on depth scale (cm) with zonation of

the diagram.

3.3 July air temperature reconstruction based on Chironomidae assemblages from the Krepa site

Chironomidae subfossil larvae were obtained from a total of 30 samples from the lacustrine sediments. Samples that contained

significantly fewer than 50 head capsules were merged except for a solitary sample at 2000 cm core depth. For 5 samples the

required number of 50 head capsules was obtained and the remaining 24 samples were merged into seven clusters. After
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merging, sample clusters at 975 cm, 1080 cm, 1120 cm and 1125 cm core depth still did not reach 50 head capsules, but
nonetheless, these samples and the one from 1000 cm core depth were included in the reconstruction because the test of the
reconstruction showed acceptable results. The lowest number of head capsules used for the Tju reconstruction was 5 individuals
at 1070 cm core depth whereas the highest number was 78 at 985 cm core depth. After merging, the total number of samples

used for the Tjy reconstruction was 15.

Due to the low number of chironomid head capsules preserved in the Krgpa sediments, a chironomid-based summer
temperature reconstruction was only possible for the uppermost part of the sediment core, encompassing the post-Holsteinian
MIS 11b stadial (Tab. 2). In LPAZ KR-12a (1122.5-1187.5 cm), which marks the onset of MIS 11b that directly follows the
Holsteinian Interglacial, average summer temperatures still ranged between 17 and 19 °C before shortly dropping to about 16
°C and increasing again to 18-20 °C in LPAZ KR-12b (1072.5-1122.5 cm). Summer temperatures remained at this level in
LPAZ KR-12c (1022.5-1072.5 cm) before significantly dropping to 15-17 °C in the middle of LPAZ KR-13a (967.5-1022.5
cm). Only at the end of LPAZ KR-13a (967.5-1022,5 cm), which is equivalent to the transition to the MIS 11a interstadial,

summer temperatures markedly increased again to about 20 °C.

Table 2: Chironomid-based summer air temperature reconstruction from the Krepa site with reconstructed mean July
air temperature (Tjul), error of the estimated Tjul, minimum dissimilarity between core and training set samples
(MinDC) and corresponding LPAZ

Core depth (cm) Tiul error of est. (Tju) MinDC LPAZ
969 20.09 1.59 9.8283 KR-13a
975 15.26 1.62 6.08105

980 16.82 1.55 7.89471

985 17.23 1.57 8.37351

990 15.93 1.68 7.35685

995 15.83 1.71 6.77137

1000 18.76 1.50 8.2743

1011 18.09 1.60 7.90763

1022 19.24 1.49 7.06444 KR-12c
1080 18.76 1.48 6.7485 KR-12b
1102 19.24 1.54 9.04927

1120 18.80 1.53 5.99662

1125 16.05 1.59 7.31879

1122 17.08 1.50 8.29472 KR-12a
1148 19.13 1.54 7.16015

According to the SNP TS reconstruction, 13 samples with good modern analogues remain below the 5% percentile threshold
(minDC), while 2 samples with average modern analogues have values above the 5% percentile threshold (8.5053 < minDC >
9.7531).
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Figure 4: Chironomid-inferred mean July temperature reconstruction from Krepa site.

4. Discussion
4.1 Chironomidae analysis as a method of palaeoclimate reconstruction

The analysis of subfossil Chironomidae is part of the palaeoecological analysis and an important element of geological,
geomorphological, and archaeological research. Chironomidae are insects belonging to the order of Nematocera. They are
common and inhabit aquatic environments, from moist soil to lakes. Their development cycle can last from 20 days to several
years, because they can extend the duration of the larval stage depending on environmental conditions (Butler, 1982). Thanks
to the ability of the head capsule to preserve in the lake and peat bog sediment for several hundred thousand years, it is possible
to reconstruct the diversity of the environment in the past centuries. On the basis of Chironomidae, it is possible to reconstruct
the average July palaeotemperature quantitatively, the trophy of the reservoir, and qualitatively the type and dynamics of the
reservoir, water pH, and microhabitats. Training sets were also created to reconstruct the water level, salinity or oxygen content
(Lotter et al., 1997).

4.1.1 Possible difficulties in climate reconstruction based on Chironomidae analysis during past interglacials

The basic principle of palaeoecological reconstructions is geological actuality (Krzeminski and Jarzembowski, 1999). The
processes taking place on Earth in the past had the same course as today. This makes it possible to reconstruct the temperature
based on the Chironomidae. In palaeoreconstructions, we assume that a given species from the Chironomidae family still has
the same habitat requirements as thousands or hundred thousands of years ago. The oldest recorded Chironomid remains date
back to the Late Triassic, i.e. 202 + 1 Ma BP (Krzeminski and Jarzembowski, 1999). Data from Krepa and preliminary
observations from the Holstein Interglacial site of Osséwka (Fig. 1), indicate a big difference in the number and state of

preservation of the remains compared to Holocene sites. The worst condition of the remains was in the sediments from the
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Ossowka site. A number of 50 individuals is required to create a reconstruction of the average July temperature. With a smaller
amount, the error range is larger, therefore the higher the number of counts, the more stable the result. With a small number of
head capsules, it is recommended to smooth the reconstruction of temperatures down the core, i.e. to combine adjacent samples
(Heiri and Lotter, 2001). In order to be able to select subsequent sites that have the potential to reconstruct the
palaeoenvironment, it is worth analysing the factors that could limit the degree of preservation of the remains or cause the
disappearance or decrease in the number of individuals. Paleolake Krepa is a site that provides us with reliable and credible
reconstructions in the late Vistulian. However, the question remains why the older sediment does not allow us to obtain
quantitative and qualitative results from the analysis of subfossil Chironomidae. In order to get closer to the answer, we analyze
situations that are rarely discussed in the literature, i.e. the absence, disappearance or sudden decline of Chironomidae in the
sediment. We also analyze the most difficult conditions in which various species of Chironomidae occur. We look for
conditions that could differ from those still accepted today by the Chironomidae community.

Chironomidae inhabit all moist or aquatic habitats from moist wood to the ocean, ranging from the tropic climate zone to the
Acrctic climate zone. The high specialisation of individual species of Chironomidae decided about such a common occurrence
and the ability to survive difficult conditions. Among the features that allowed the family to succeed are: a short life cycle (in
some cases only 8 days) (Reyes-Maldonado et al., 2021), osmoregulation enabling survival of high salinity of the reservoir
(Kokkinn, 1986) or parthenogenesis giving high efficiency of population reproduction, faster colonisation rate and high fertility
(Lencioni, 2004; Nondula et al., 2004; Donato and Paggi, 2008; Orel and Semenchenko, 2019; Lackmann et al., 2020), as well
as a short DNA chain and the ability to repair the genome, which reduces the accumulation of harmful mutations (Gusev et
al., 2010; Cornette et al., 2015). Some species of Chironomidae are able to change the food resources they use depending on
their availability in the habitat (Tokeshi, 1995; Davis et al., 2003). Large reservoirs have a greater variety of habitats and thus
more diverse communities of Chironomidae (Allen et al., 1999; Heino, 2000; Tarr et al., 2005), attract a more migratory
population (J. Baber et al., 2004; Tarr et al., 2005) and they are more resilient to extreme droughts and other extreme events.
Isolated, highly remote habitats reduce species diversity and dispersal (Roberts, 2003).

Despite the specialisation of Chironomidae, there are many conditions in the environment that limit the number of
communities. One of the main factors limiting and determining the life processes of Chironomidae is temperature. Each life
stage of the Chironomidae is dependent on this factor. The development of eggs, larvae and pupae, nutrition and growth, the
emergence of individuals or the ability to fly have their temperature maxima and minima, beyond which the given processes
no longer take place. In sub-zero temperatures, when the tank freezes, most groups can tolerate low sub-zero temperatures.
The temperature below which the development of most species does not occur is -15°C (Walker and Mathewes, 1989;
Ptociennik, 2005). Frost tolerance is the highest in the Orthocladinae family and the lowest in the Tanypodinae (Danks, 1971).
Some species stop eating and empty their intestines for the winter. There are larvae in which feeding continues, and the
temperature only affects the occurrence of pupation. There are species (e.g. Einfeldia synchrona-type) that burrow deeper in
winter, penetrating deeper layers of silt. Early developmental stages of larvae often do not occur in winter. Another protective

mechanism against freezing is the production of cocoons or sealing the tube (Danks, 1971).
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Another factor strongly limiting the number of Chironomidae is low - acidic pH. Below 6.0, most Chironomidae taxa are
eliminated and replaced by Chaboridae and Ceratpogonidae (Henrikson et al., 1982; Walker et al., 1985; Walker, 2001;
Brooks et al., 2007). Only a few species can withstand pH as low as 1.4, such as Chironomus sulfurosus-type, Chironomus
acerbiphilus-type or Polypedilum tamanigrum-type (Takagi et al., 2005; Doi et al., 2007).

The factor causing the decline of the population is the lack of oxygen in the water. However, it is not possible to see this in
palaeoreconstruction. The only thing that can indicate in the palaeo-record are remains and a large accumulation of organic
matter. An increase in organic matter can increase the amount of bacterial respiration, causing oxygen deficiency in the deep
zone (Charlton, 1980; Matzinger et al., 2010; Mdller et al., 2012). One of the species resistant to oxygen deficiency is, for
example, Sergentia coracina-type, which disappears after the concentration decreases to the level of 2.7 mg L-1 (Quinlan and
Smol, 2001) and <4 mg L-1 (Luoto and Salonen, 2010). Oxygen deficiency can also be caused by freezing of the lake, as a
result of which it is cut off from atmospheric oxygen (Pechlaner, 1966; Welch, 1991). Also, freezing can reduce the amount
of calcite and the manganese to iron ratio, which may indicate an increase in decomposition processes at the bottom of the
reservoir (Koinig et al., 2003). These changes may be caused by morphological factors (Aeschbach-Hertig et al., 1999) and
thermal stratification (Jankowski et al., 2006) or the supply of biogenic elements: nitrogen and phosphorus (Rabalais et al.,
2010; Frossard et al., 2013; Belle et al., 2016).

The abundance of Chironomidae and their dispersal is limited by the poor ability to select a flight site and lay eggs. The
Chironomidae larvae only has the ability to disperse around the reservoir and select the substrate for life. This dispersal is
often done passively by water currents, by phototaxis or by the ability to feed on plankton. Chironomidae larvae have the
ability to rheotaxis, which allows for quick and effective colonisation of environments (Davies, 1976).

Another factor limiting the behaviour of Chironomidae in the sediment are mechanical factors that cause damage to the head
capsule. Tanypodinae remains, due to their large size, are not very resistant to disintegration and the number of preserved
capsules may be smaller (Walker et al., 1984). It is also debated how resistant the head capsule arising from the periodic
shedding of the Chironomidae exoskeleton produced by ecdysis and the larvae that are buried and tanning in the sediment
(Walker, 1987). Only remains from the 3rd and 4th larval stages are preserved in the sediments. This is most likely due to the
increased amount of chitin in these developmental stages, which makes the remains more resistant to further disintegration.
The capsules preserved in the sediment come from the habitats of living larvae (lovino, 1975). The remains of Chironomidae
may not be preserved in the sediment because there was a low accumulation rate, while those from the shore habitats could be
poorly preserved. However, most studies confirm the positive relationship between biocenosis and thanatocoenosis (lovino,
1975; Walker et al., 1984). The number of generations per year may also affect the abundance of Chironomidae, multivoltine
species being overrepresented to bivoltine.

The physicochemical properties of water are also a factor causing changes in chironomid communities. For example, a
reduction in the number of chironomids may be caused by floods and heavy rainfall. Floods cause for example pollution,
surface runoff, lowering of pH and/or instability and rolling of the substrate (Teristiandi, 2021). A decrease in the water level

also leads to the disappearance of chironomid larvae with a subsequent changes in the groupings from lacustrine to semi-
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terrestrial and terrestrial communities (Pociennik et al., 2015, 2020) and droughts may cause the extinction of larvae (Buck,
1965; Berglund and Digerfeldt, 1970; Delettre, 1988; Jackson and Mclachlan, 1991; Rohrig et al., 2004). The chemical
properties of water, such as increased concentrations of aluminium and other metals (Bitusik and Kubovcik, 2000), or Fe,
NH4+ compounds also have an impact on chironomid communities (De Haas et al., 2006). A less significant impact is also
reported for interspecific and intraspecific competition and predation (Davis et al., 2003; Roberts, 2003) or fish predation
(Goyke and Hershey, 1992; Rieradevall and Roca, 1995; Mousavi et al., 2003; Milardi et al., 2016; Sayer et al., 2016).

The main factor influencing the preservation of the remains is the content of CaCO3 in the soil and the bottom of the reservoir,
especially in medium and strongly acidified reservoirs. This factor is often more important than pH, depth or time deposition
of remains (Bailey et al., 2005). The microenvironment and the presence of organic matter are of great importance for the
preservation of remains (Briggs and Kear, 1993; Sageman and Hollander, 1999). The faster mineralization occurs, the better
the preservation of the remains (Briggs and Kear, 1993; Park, 1995). Moist and anaerobic environments such as ditches, peat
bogs or cold or desert conditions are more favourable (Speight, 1974; Huchet, 2014). Clay is a better environment for
preserving remains than water. Clay has tanning properties, catalyses the cross-linking of proteins. It also protects the remains
from bacterial degradation. Kaolinites are a component conducive to the preservation of remains, they can facilitate
preservation and accelerate mineralization. Mineralization is also favoured by the fine grain size of the sludge, the solubility
of its components in organic acids with hypoxia or low dissolved oxygen, and the content of minerals: Fe, Al or Cr (Naimark
etal., 2016). The main factors of decay are physical factors (such as pressure) or biological factors including bacteria and fungi
(Speight, 1974; Huchet, 2014).

In our preliminary tests, we did not use chemicals and we soaked the samples for a long time to eliminate as much mechanical
damage to the head capsules as possible during the sieving of the samples. Nevertheless, from some sites, whole head capsules
have not been preserved, which could have been caused by high pressure and compression of the sediment. A small number
of head capsules may be a difficulty at the stage of material. This necessitates summing up the samples and increasing the
volume of the analyzed samples (some of the samples were even 20 cm3 in volume). Difficulties arising at the preparation
stage also include the lack of continuity in the occurrence of Chironomidae and their low frequency in the sediment.

The factors reducing the abundance are: extreme temperatures, low nutrient levels, adverse geomorphology, or following large
storm events, acidic water pH, or high Se concentration (Mousavi, 2002; Gresens et al., 2007; Del Wayne et al., 2018). The
content of hydrogen sulphide during holomixis, above 0.3 ppm, may also contribute to the death of Chironomidae.
Chironomidae do not occur, as well as during paludification in the lake (Takagi et al., 2005; Ptociennik et al., 2020).

The lack of oxygen in the sediment could have limited not only the number of Chironomidae but also the number of preserved
head capsules in the sediment. Chitin usually does not accumulate in anaerobic sediments because it is more easily broken
down by Fibrobacteria. Chitin was effectively mineralized into CH4 and CO2 (Wdrner and Pester, 2019).

In the researched core, we have interruptions in the preservation of the head capsules. The sediment indicates that the lake was
functional, but Chironomidae head capsules are not recorded. Based on the literature and our results, we are currently only

able to exclude factors that do not affect the degree of preservation of the Chironomidae heads. In fact, in some periods, no
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parts of Chironomidae or chitinous insect parts or macroremains were visible in the samples, suggesting a lack of preservation
of the remains. One of the hypotheses could be that chitin was mineralized from the head capsule and changed the contain of
carbon in the sediment. It is especially possible with the lack of cellulose remains of plants too. However, further extended
research on Pleistocene sediments is needed to discover which environmental factor caused the lack of capsules.

4.1.2 Summer temperature and ecological reconstructions based on Chironomids from the Kre¢pa site in relation to
environmental change

A chironomid-based summer temperature reconstruction was only possible for the part of the Krepa sediment core that
corresponds to LPAZ KR-12 and early KR-13, which most probably correspond to MIS 11b. July temperatures during the
early part of this interval (LPAZ KR-12a and KR-12b), i.e. directly after the Holsteinian Interglacial, were most probably still
relatively high and stable, ranging from 19 to 21 °C, but dropping rapidly in LPAZ KR-12c and KR-13a to 15-17 °C before
increasing again to about 20 °C at the top of LPAZ KR-13a, possibly reflecting the transition into the post-Holsteinian
interstadial that corresponds to MIS 11a. These data indicate that summer temperature maximum during the post-Holsteinian
period was even slightly higher than indicated in the Polish training set (17-20°C)(Kotrys et al., 2020). On the other hand,
there were periods with colder summers than today (15°C). Comparing MIS 11 to the Holocene, it is crucial to mention that
insolation patterns for those periods differ - MIS 11 is characterised by two insolation maxima, whereas there is one (but more
distinct) during the latter period (Rohling et al., 2010). In fact, summer temperature increase during MIS 11b might be
explained by increasing insolation rate at the time.

In general, Chironomidae remains in the Krepa sediment core occur mostly during cool periods. For example, in the interglacial
part of the profile isolated remains can only be found in LPAZ KR-4 that precedes the OHO and in LPAZ KR-7 that
corresponds to the YHO. The most abundant Chironomidae record is present in the part relating to LPAZ KR-12. This zone is
thought to roughly correspond to MIS 11b, which is considered the first colder phase of MIS 11 (Imbrie et al., 1984; Fawcett
et al., 2011) encompassing the transition into the glacial period that corresponds to MIS 10. The pollen record during LPAZ
KR-12a suggests the presence of a Pinus-dominated forest, possibly still with a small admixture of Picea, which might indicate
more humid conditions, but not necessarily a warmer climate (Caudullo et al., 2016). In the pollen record, cold periods like
LPAZ KR-12b and KR-13a are characterized by rapid increases in NAP, which suggests the decline of forests. The Pediastrum
remains, especially abundant during these phases, were identified as P. kawraiskyi, a species which, according to Jankovské
and Komarek (2000), usually dominates the algal communities found in the cool phases of the Pleistocene, Late Glacial, and
Early Holocene in Europe. The Krepa palaeolake during LPAZ KR-12b was possibly an oligotrophic lake surrounded by open
vegetation. Considering the dominance of herbs and dwarf shrubs in the pollen spectrum, the limiting factor for the
development of forest communities was more likely connected to low winter temperatures as summer temperatures were still

relatively high.
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LPAZ KR-12c begins with the formation of pioneer Betula-Larix forests. Initially, the forests were sparse and shrub tundra
communities were still present in the area as indicated by Juniperus and Betula nana pollen. In the following, vegetation
gradually changed into dense Pinus-dominated forests. Chironomidae are absent during this interval, in agreement with our
observation that their presence is rather restricted to colder periods. They only re-appear during the final stage of MIS 11b,
which is represented by LPAZ KR-13a. The apparently rather gradual cooling during LPAZ KR-13a possibly still enabled the
presence of sparse Betula forests at the beginning of the phase. This is in agreement with reconstructed summer temperatures
of about 19°C, similar to the end of LPAZ KR-12b. The following rapid cooling is reflected by the dominance of NAP in
LPAZ KR-13a after the decline of Betula. Summer temperatures during this period reached only 15°C, but the limiting factor
for vegetation development still remained the winter temperatures. At the end of LPAZ KR-13a, another increase in
temperature is observed, which might be connected to the warming at the onset of the following interstadial, being equivalent
to MIS 11a. As the pollen record during stadials is mostly controlled by wind-pollinated overproducers such as Poaceae and
the long-distance transport of tree pollen (mostly Pinus), it is unfortunately not possible to directly connect temperature

changes to the occurrence of specific plant taxa.

In general, the results from Krepa are really difficult to compare because chironomid-based temperature reconstructions from
Europe are so far mostly restricted to the Weichselian Late Glacial and the Holocene (Gandouin et al., 2016; Nazarova et al.,
2018; Druzhinina et al., 2020). In contrast, there are only very few chironomid-based summer temperature reconstructions for
the Late and Middle Pleistocene prior to 20 ka BP available (Gandouin et al., 2007; Samartin et al., 2016; Plikk et al., 2019;
Ilyashuk et al., 2020; Bolland et al., 2021; Rigterink et al., 2024), but so far none for MIS 11 complex. However, these records
are characterised by higher abundance and species diversity of Chironomidae, while at Krepa Chironomidae occur only during
the early glacial period following the Holsteinian Interglacial. A similar phenomenon has so far only been observed in the
Laptev Sea region (Arctic Siberia), where Chironomidae also appear only in the cold period of the Eemian Interglacial, when
the site was surrounded by wet grass-sedge shrub tundra, while Chironomidae were absent during the warm period (Andreev
et al., 2004). The lack of accurate absolute dating for terrestrial sediment sequences from the Holsteinian Interglacial makes it
difficult to compare the results from Krepa to other MIS 11 sites. However, as there are a few quantitative temperature
reconstructions based on pollen and biomarkers from other sites in Europe available for the post-Holsteinian, a general
comparison of temperature levels during this interval seems feasible. It is worth mentioning that a few palaeotemperature
reconstructions based on proxies has been conducted, e.g. in SW Europe - Iberian margin (Oliveira et al., 2016). Pollen analysis
from this site shows similar climatic and ecological patterns for MIS 11b as observed in Krepa site - forest decline events and
relatively high temperature levels. This also seems to be confirmed by palynological data from the SE Europe site - Lake Ohrid
(Kousis et al., 2018). Convergence of data from different parts of the continent increases potential plausibility of

palaereconstruction from Krepa.
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Conclusion

The reconstruction from the available section has mainly good modern analogues, which means that Chironomidae are a good
proxy for temperature reconstruction also for the Pleistocene epoch. They are an environmental indicator. There is a great need
for further research to better understand the factors limiting the functioning and preservation of Chironomidae in the
Pleistocene. Up to date, the vast majority of palaecoenvironmental studies relies on pollen analysis. Nevertheless, this does not
prejudge the lack or low abundance of Chironomid-inferred reconstruction in sites other than Holocenian. More than that, they
might prove to be a priceless source of knowledge, considering potential differences between pollen and Chironomid-inferred
records. By comparing the results from different sites, it will be possible to find the factor that influenced the preservation of
subfossil remains of Chironomidae.

Further study of Chironomidae from the Pleistocene will allow us to trace climate changes without human influence. This will
enable us to learn about the natural processes of global warming, the factors causing them, and the variability and specialisation
of species.

To summarize our results, the subfossil remains occur abundantly only in non-calcareous gyttja - while investigating Holocene
sites, it can be found in most lake sediment types. In contrast to Holocene sediment records, which are usually characterised
by a high abundance and diversity of Chironomidae (Engels et al., 2020), the Holsteinian Interglacial sediments from Krepa
reveal only a low number of Chironomidae, while they are more abundant/better preserved during the transition into the
following glacial period.
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